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Abstract—U-UV codes are good-performing short-to-medium
length channel codes constructed by several algebraic component
codes. They are coupled through the (U|U+V) recursive structure.
With eBCH codes as the component codes, U-UV codes can be
interpreted as the generalized concatenated codes (GCCs) with
inner polar codes and outer eBCH codes. With ordered statistic
decoding (OSD) for the outer codes, the successive cancellation list
(SCL) decoding of U-UV codes can outperform that of the cyclic
redundancy check (CRC)-polar codes. But the complexity of the
OSD grows exponentially with its decoding order, rendering the
worst-case decoding complexity of U-UV codes being too high.
This paper proposes the SCL2 decoding of eBCH based U-UV
codes, in which both the inner codes and outer codes are decoded
by the SCL decoding. In particular, the eBCH outer codes are
interpreted as the concatenation of a polar code and a linear
transform. Consequently, it can be decoded by SCL decoding
with a sub-quadratic complexity. Our simulation results show
that for eBCH based U-UV codes, SCL2 decoding can reduce the
binary operations required in the existing (outer) OSD-(inner)
SCL decoding by an order of magnitude, while maintain the
decoding performance.

Index Terms—generalized concatenated codes, short-to-medium
length codes, successive cancellation list decoding, U-UV codes

I. INTRODUCTION

The next generation communication networks will enable
ultra-reliable and low-latency data transmission, in which good-
performing short-to-medium length (SML) channel codes play
an important role. The currently known competent SML chan-
nel codes include BCH codes [1] [2], tail-biting convolutional
codes [3], cyclic redundancy check (CRC)-polar codes [4]–[6]
and polarization adjusted convolutional codes [7]. Recently, U-
UV codes were proposed as another good-performing SML
code [8]–[11]. It is constructed by several component codes of
equal length, which are called the U codes and V codes. They
are coupled through the (U|U + V) recursive structure. This
construction is also known as Plotkin construction [12]. For
simplicity, we refer to it as the U-UV construction. This con-
struction also results in polarized subchannels, each of which
conveys a component code. Rates of the component codes can
be designed based on the subchannel capacity [9] [10] [13].
The U-UV codes can also be interpreted as the generalized
concatenated codes (GCCs), in which the component codes
and the polar codes are the outer codes and the inner codes,
respectively [13]. Using BCH codes as the outer codes, their
successive cancellation list (SCL) decoding performance can be
better than that of the CRC-polar codes [10]. Note that under

the GCC paradigm, the existing SCL decoding is referred to
as the (outer) OSD-(inner) SCL decoding.

In the OSD-SCL decoding of U-UV codes, component codes
are decoded by the ordered statistic decoding (OSD). It can
yield a near maximum likelihood (ML) decoding performance
for the component codes, while produce multiple codeword
estimations. However, its complexity grows exponentially with
the decoding order, leading to a high OSD-SCL decoding
complexity. For this complexity, the low complexity SCL
decoding of U-UV codes was proposed in [14]. It reduces
the complexity of OSD by introducing an efficient skipping
rule. Meanwhile, it also curbs the use of OSD through pruning
the redundant SCL decoding paths. However, the sequential
Gaussian elimination (GE) required by the OSD imposes an
uncompromised decoding latency, affecting the practical appli-
cation of U-UV codes. And the variable-dependent nature of
GE’s execution steps makes it hardware-unfriendly.

In order to further facilitate the decoding of U-UV codes,
this paper proposes the SCL2 decoding for the eBCH based
U-UV codes, in which both the inner and outer codes are
decoded by the SCL decoding. By interpreting the eBCH codes
as concatenation of a polar code and a linear transform, they
can be decoded by the SCL algorithm [15]. With a sufficiently
large list size l, the SCL decoding can achieve a near ML
decoding performance for eBCH codes with a complexity of
O(l · nlog2n), while the order-τ OSD has a complexity of
O(kτ ). Note that n and k are length and dimension of the
code, respectively. Consequently, decoding complexity of U-
UV codes can be significantly reduced, making the codes more
practical. Note that OSD requires τ ≥ min{⌊d

4⌋, k} to approach
the ML decoding performance of the outer code, where d is its
minimum distance [16]. The complexity of OSD-SCL decoding
grows exponentially with the length of the outer codes. Hence,
SCL2 decoding will be more suitable for U-UV codes with long
outer codes. Our simulation results show that for the eBCH
based U-UV codes, SCL2 decoding can reduce the binary
operations required in the existing OSD-SCL decoding by an
order of magnitude, while maintain the decoding performance.

II. PRELIMINARIES

A. U-UV Codes

Let the U code and V code be two linear block codes of
length n with dimensions kU and kV, respectively. The 1-level
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U-UV code of length 2n and dimension kU+kV is constructed
as [12]

{(u |u+ v);u ∈ CU,v ∈ CV}, (1)

where CU and CV denote the codebooks of the U code and V
code, respectively. A multi-level U-UV code can be constructed
by extending this construction recursively through involving
more component U codes and V codes. A γ-level U-UV code
consists of H = 2γ component codes. Let Uh denote the h-
th component code, where h = 1, 2, · · · , H . The component
code Uh is an eBCH code of length n and rate Rh = kh/n.
The γ-level U-UV code has a length of Hn and a rate of
(
∑H

h=1 Rh)/H .
In this work, eBCH codes are used as component codes,

since they have a length of power of two to be decoded by
the SCL algorithm. And their large minimum distances ensure
the good distance properties of U-UV codes. As illustrated
in Fig. 1, the U-UV codes can be interpreted as generalized
eBCH-polar concatenated codes, in which H outer eBCH codes
are concatenated with n inner polar codes. Rates of the outer
codes can be designed by computing the finite length rate of
the polarized subchannels and further applying the equal error
probability rule to adjusting them [10]. With OSD for the outer
codes, the OSD-SCL decoding of U-UV codes can be realized,
but with an outer decoding complexity that is exponential in
nature [10].

eBCH 

Encoder 1

eBCH

Encoder H 

Polar 

Encoder 1

Polar

Encoder n

...
...

...

...
...

...

...
...

...

...

Fig. 1. GCC interpretation of a U-UV code with eBCH component codes.

B. SCL Decoding of Binary Linear Block Codes

Let F2 denote the binary field and F2m further denote the
nonbinary field of characteristic two and with a primitive ele-
ment α. Let F = ((1, 0), (1, 1))T denote the Arıkan kernel. A
polar code of length n = 2m and dimension k is a linear block
code defined by the generator matrix Gp = F⊗m ∈ Fn×n

2 ,
where ⊗m denotes the m-fold Kronecker product. Note that
Gp is invertible, which implies that any (n = 2m, k) binary
linear block code C with a generator matrix G ∈ Fk×n

2 can be
obtained as an appropriate subspace of the codebook defined
by Gp [17]. The codebook C can be defined as

C ≜ {c = mG | ∀m ∈ Fk
2}

= {c = m(GG−1
p )Gp | ∀m ∈ Fk

2}
= {c = xGp | x = mGG−1

p ,∀m ∈ Fk
2}.

(2)

Hence, its codeword c can be reinterpreted as a polar codeword.
C can also be regarded as a polar code concatenated with a
linear transform defined by GG−1

p . To facilitate the successive

cancellation (SC) decoding of C, GE shall be performed on
GG−1

p , obtaining M = EGG−1
p ∈ Fk×n

2 , where M is a matrix
of row reduced echelon form and E is an elimination matrix.
The codeword c can be represented as

c = mpMGp, (3)

where mp = mE−1 ∈ Fk
2 is the transformed information

vector. With mp as the information vector of the polar code,
x = mpM consists of k information bits and n − k frozen
bits. The information bits are indexed by the pivot columns
of M. They constitute the information set A. The frozen bits
are linear combination of the information bits of lower indices.
Hence, C can now be regarded as a polar code with dynamic
frozen bits [17]. The SC decoding can be performed to obtain
the information vector estimation m̂p. The original information
vector m can be further estimated by m̂ = m̂pE.

Let Pe(Wi) denote the error probability on the i-th polarized
subchannel of a length-n polar code, where 1 ≤ i ≤ n. The
union bound on the block error rate (BLER) of SC decoding
is [4]

Pblock ≤
∑
i∈A

Pe(Wi), (4)

where Pe(Wi) can be computed via Monte Carlo simulation
or Gaussian approximation (GA) [13] [18]–[20]. Therefore, the
SC decoding performance of C depends on the selection of
information set A. Since A is not constituted by the indices
of subchannels with the smallest error probability, the SC
decoding performance of C can be worse than that of a well-
designed polar code.

In order to improve the SC decoding performance, permu-
tation matrix P ∈ Fn×n

2 was introduced in [15] to adjust the
information set A. The codebook C can be rewritten as

C ≜ {c = mG | ∀m ∈ Fk
2}

= {c = m(GP−1G−1
p )GpP | ∀m ∈ Fk

2}
= {c = mE−1(EGP−1G−1

p )GpP | ∀m ∈ Fk
2}

= {c = (mpMGp)P | ∀mp ∈ Fk
2},

(5)

where the elimination matrix E transforms GP−1G−1
p into

the row reduced echelon form, and M = EGP−1G−1
p . With

this transform, any codeword of C can be seen as a permuted
codeword of a polar code. Information set A can be adjusted by
different permutation matrices P. Theoretically, a permutation
matrix that minimizes Pblock should be chosen. Subsequently,
with an adequate list size, the SCL decoding can achieve a near
ML decoding performance for C. Fig. 2 summarizes the SCL
decoding described above.

Encoder Channel P
 -1 SCL 

Decoder
E

Fig. 2. Block diagram of the SCL decoding of binary linear block codes.
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III. SCL2 DECODING

A. Permutation Matrix for SCL Decoding of eBCH Codes

For SCL decoding of eBCH codes, permutation matrix P
can be constructed to ensure a good decoding performance.
Consider the (n = 2m, k) eBCH code with a generator matrix
G ∈ Fk×n

2 . Let Pa,b denote the row-a column-b entry of P ∈
Fn×n
2 , where 0 ≤ a, b ≤ n− 1. It can be defined as

Pa,b =


1, if αa =

∑m−1
j=0 uj · αj , b =

∑m−1
j=0 uj · 2j ,

0 ≤ a ≤ n− 2 or a = n− 1, b = 0;

0, otherwise,
(6)

where coefficients u0, u1, · · · , um−1 ∈ F2. This design ensures
that the first few columns of GP−1G−1

p are zero vectors.
Subsequently, the first few columns of M = EGP−1G−1

p

are also zero vectors. It implies that the polarized subchannels
with low indices of the polar code (transformed from the
eBCH code) convey frozen bits. In general, the error probability
on these subchannels are relatively large. This permutation
matrix aims to optimize the SC decoding BLER Pblock, but it
can not guarantee it being minimized. The following example
demonstrates the transformation of an eBCH code and the
upper bound of its SC decoding BLER.

Example 1. Let us consider the (16, 5) eBCH code with a
generator matrix G. With the permutation matrix P defined as
in (6) and Gp = F⊗4, one can obtain

GP−1G−1
p =


0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

 .

(7)
The first seven columns of GP−1G−1

p are zeros vectors. By
performing GE on GP−1G−1

p , M can be obtained as

M =


0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 . (8)

Indices of the weight-1 columns of M constitute the in-
formation set of the transformed polar code, i.e., A =
{8, 12, 14, 15, 16}. When transmitted over the additive white
Gaussian noise (AWGN) channel at the signal-to-noise ratio
(SNR) of 2.5 dB, the upper bound of SC decoding BLER is
0.269 according to (4).

B. Interaction Between Inner and Outer SCL Decoding

The SCL2 decoder of a γ-level U-UV code consists of
n inner SCL decoders and H = 2γ outer SCL decoders,
as shown in Fig. 3. Assume that a U-UV codeword c =
(c1, c2, · · · , cHn) ∈ FHn

2 is transmitted through a discrete
memoryless channel using binary phase shift keying (BPSK)
modulation of mapping: 0 7→ 1; 1 7→ −1. Let y =
(y1, y2, · · · , yHn) ∈ RHn denote the received symbol vector

Outer SCL 

Decoder 1

Outer SCL 

Decoder H

Inner SCL 

Decoder 1

Inner SCL 

Decoder n

P
erm
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u
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n
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…
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Fig. 3. SCL2 decoding of a γ-level U-UV codes.

and L = (L1, L2, · · · , LHn) ∈ RHn denote the corresponding
log-likelihood ratio (LLR) vector with entries defined as

Lj = ln
p(yj |cj = 0)

p(yj |cj = 1)
, (9)

where j = 1, 2, · · · , Hn. These LLRs are partitioned into n
groups, each of which is the input of an inner SCL decoder. In
particular, input of the t-th inner SCL decoder is

Lt, Ln+t, · · · , L(H−1)n+t, (10)

where t = 1, 2, · · · , n. In the following description, the super-
script I and O in the symbols indicate that they are symbols
of the inner and outer decoders, respectively. At the beginning,
all the n inner SCL decoders compute the LLRs of the first
subchannels of the inner polar codes [21], which constitute

LI
−,1 = (LI

1,1, L
I
2,1, · · · , LI

n,1). (11)

By further performing the permutation P−1, they form the
input LLR vector for the first outer SCL decoder as:

LO
1 = (LO

1,1, L
O
1,2, · · · , LO

1,n) = LI
−,1P

−1. (12)

In the SCL2 decoding with a list size of l, the first outer SCL
decoder produces l codeword estimations. They are denoted as:

ĉO
1 (s) = (ĉO

1,1(s), ĉ
O
1,2(s), ..., ĉ

O
1,n(s)), (13)

where s = 1, 2, · · · , l. After applying the permutation P, they
are fed back to the inner SCL decoders as:

ĉI
−,1(s) = (ĉI

1,1(s), ĉ
I
2,1(s), · · · , ĉI

n,1(s)) = ĉO
1 (s)P. (14)

With ĉI
t,1(s) as the bit estimation of the first subchannel,

the t-th inner SCL decoder computes LI
t,2(s) for the second

subchannel. Grouping the LLRs of the second subchannels of
the inner polar codes, one can obtain

LI
−,2(s) = (LI

1,2(s), L
I
2,2(s), · · · , LI

n,2(s)), (15)

where s = 1, 2, · · · , l. The input LLR vectors for next outer
SCL decoder are further formed by LO

2 (s) = LI
−,2(s)P

−1.
Based on each LLR input, the outer SCL decoder produces l

codeword estimations. Hence, as the outer codes are decoded,
the number of decoding paths increases exponentially, leading
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to an exponentially growing complexity. In order to reduce the
decoding complexity, only the l most likely estimations will
be reserved for each outer code. That says an l2-to-l decoding
path pruning will be performed after each outer SCL decoding
except the first one. Let

LO
h(s) = (LO

h,1(s), L
O
h,2(s), · · · , LO

h,n(s)) (16)

denote the s-th input vector for the h-th outer SCL decoder,
where h = 2, 3, ...,H . Further let

ĉO
h(s, s

′) = (ĉO
h,1(s, s

′), ĉO
h,2(s, s

′), · · · , ĉO
h,n(s, s

′)) (17)

denote the s′-th codeword estimation produced by the h-
th outer SCL decoder with LO

h(s) as the input, where
s′ = 1, 2, · · · , l. The correlation distance between LO

h(s) and
ĉO
h(s, s

′) is defined as

λ
(s,s′)
h = λ(LO

h(s), ĉ
O
h(s, s

′))

=
∑

j∈Ψ
(s,s′)
h

|LO
h,j(s)|, (18)

where Ψ
(s,s′)
h = {j|LO

h,j(s) · (1 − 2ĉO
h,j(s, s

′)) < 0}. It
is used as the metric for assessing the likelihood of the
codeword estimations. A smaller correlation distance indicates
the estimation is more likely to be the transmitted codeword.
The accumulated correlation distance (ACD) corresponding to
ĉO
h(s, s

′) is defined as

Φ
(s,s′)
h = Φ

(s)
h−1 + λ

(s,s′)
h , (19)

where Φ
(s)
h−1 is the ACD of the s-th decoding path correspond-

ing to ĉO
h−1(s). At the beginning, Φ(s)

1 was initialized as

Φ
(s)
1 = λ

(s)
1 , (20)

where λ
(s)
1 = λ(LO

1 , ĉ
O
1 (s)) is the correlation distance between

the input LLR vector LO
1 of the first outer SCL decoder and its

s-th codeword estimations ĉO
1 (s). A decoding path that yields

a smaller ACD is more likely to be the correct path. Therefore,
the l2-to-l decoding path pruning select the l decoding paths
that yield the l smallest ACDs. These ACDs are relabeled
as Φ

(1)
h ,Φ

(2)
h , · · · ,Φ(l)

h . Their corresponding codeword esti-
mations are relabeled as ĉO

h(1), ĉ
O
h(2), · · · , ĉO

h(l), respectively.
The feedback for inner SCL decoders are further obtained by
performing permutation P on them.

After the H-th outer SCL decoding, there remain l decoding
paths that yield Φ

(1)
H ,Φ

(2)
H , · · · ,Φ(l)

H . Let

s∗ = arg min{Φ(s)
H , s = 1, 2, · · · , l}. (21)

The decoding path that yields Φ
(s∗)
H corresponds to the most

likely codeword estimation under this decoding. The esti-
mated U-UV codeword ĉ can be reconstructed by coupling
ĉI
1(s

∗), ĉI
2(s

∗), · · · , ĉI
n(s

∗) as in (1).

Algorithm 1 summarizes the above decoding process. In
general, the inner SCL decoders provide LLR vectors for the
outer SCL decoders. The outer SCL decoders return component

Algorithm 1: SCL2 Decoding of U-UV Codes
Input: L;
Output: ĉ;

1 For t = 1, 2, · · · , n do
2 Perform LLR update of the t-th inner SCL decoder,

yielding LI
t,1;

3 Obtain LO
1 as in (12);

4 Perform SCL decoding of the first outer code, yielding
{ĉO

1 (s)|s = 1, 2, · · · , l};
5 Determine Φ

(s)
1 as in (20) ;

6 Perform permutation P on each estimation candidate of
{ĉO

1 (s)|s = 1, 2, · · · , l};
7 For h = 2, 3, · · · , H do
8 For t = 1, 2, · · · , n do
9 Perform LLR update of the t-th inner SCL

decoder, yielding {LI
t,h(s)|s = 1, 2, · · · , l};

10 For s = 1, 2, · · · , l do
11 Perform permutation P−1 on LI

−,h(s), yielding
LO

h(s);
12 Perform SCL decoding of the h-th outer code,

yielding {ĉO
h(s, s

′)|s, s′ = 1, 2, · · · , l};
13 Determine Φ

(s,s′)
h as in (18) and (19) ;

14 Select the l estimations with the smallest Φ(s,s′)
h

and relabel them as {ĉO
h(s)|s = 1, 2, · · · , l} ;

15 Perform permutation P on each estimation
candidate of {ĉO

h(s)|s = 1, 2, · · · , l};
16 Select the most likely decoding path as in (21) ;
17 Reconstruct ĉ as in (1);

codeword estimations to the inner SCL decoders. The SCL2 de-
coding is realized by such an information exchange mechanism
between the inner and outer SCL decoders.

C. Complexity Analysis

In the proposed SCL2 decoding, the complexity attributes
to the LLR updates and the decoding path sorting of both the
inner and outer SCL decoders.

With a list size of l, complexity of the LLR updates of the
inner SCL decoders is O(nlHlog2H). Moreover, complexity
of the decoding path sorting of the inner SCL decoders is
O(Hl2log2l). If the list size of the h-th outer SCL decoder
is lh, complexity of its LLR updates is O(lhnlog2n), and
complexity of its path sorting is O(khlhlog2lh). Note that kh is
the dimension of the outer code. And lh ≥ l should be satisfied
since the outer SCL decoder needs to produce l codeword
estimations for the inner SCL decoders. Considering there are
H outer codes, complexity of the LLR updates of the outer
SCL decoding is O(

∑H
h=1 lhnlog2n). Similarly, complexity

of the decoding path sorting of the outer SCL decoding is
O(

∑H
h=1 khlhlog2lh).

Table I summarizes the above analysis, which also shows
the existing OSD-SCL decoding complexity of U-UV codes.
In the OSD-SCL decoding, the h-th outer code is decoded
by an order-τh OSD. It can be seen that the proposed SCL2
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TABLE I
DECODING COMPLEXITY COMPARISON BETWEEN SCL2 DECODING AND OSD-SCL DECODING

Inner LLR Update Outer LLR Update Inner Path Sorting Outer Path Sorting OSD

U-UV, SCL2 (l) O(nlHlog2H) O(
∑H

h=1 lhnlog2n) O(Hl2log2l) O(
∑H

h=1 khlhlog2lh) -
U-UV, OSD-SCL (l) [10] O(nlHlog2H) - O(Hl2log2l) O(lHΓ∗log2l)

† O(lHk
τh∗
h∗ )‡

† Γ∗ = max{
∑τh

j=0

(kh
j

)
|h = 1, 2, · · · , H}; ‡ h∗ = arg max{kτhh |h = 1, 2, · · · , H}.

decoding removes the binary operations (BOPs) required by
the OSD. But it incurs extra floating point operations (FLOPs)
for its outer LLR updates. Moreover, OSD requires τh ≥
min{⌊dh

4 ⌋, kh} to approach the ML decoding performance of
the h-th outer code, where dh is its minimum distance. τh grows
linearly with the length of the h-th outer code, implying that the
complexity of OSD-SCL decoding grows exponentially with
the length of the outer codes, while SCL2 decoding exhibits
sub-quadratic growth. Hence, SCL2 decoding will be more
suitable for U-UV codes with long outer codes.

IV. SIMULATION RESULTS

This section shows our simulation results on SCL2 decoding
of the eBCH based U-UV codes. They are obtained over the
AWGN channel using BPSK modulation. List sizes of the outer
SCL decoding and orders of the OSD are chosen such that a
near ML decoding performance can be achieved for the eBCH
codes. Performance of the CRC-polar codes designed by the
5-th generation new radio (5G NR) standard are also shown as
benchmarks. A length-8 CRC code is employed for its CRC
aided (CA)-SCL decoding.

A. Decoding Performance

Fig. 4 shows the BLER performance of the SCL2 decoding
of the 2-level (256, 183) U-UV code. It is constructed by the
(64, 57), (64, 51), (64, 51) and (64, 24) eBCH codes. The CA-
SCL decoding performance of the (256, 183) CRC-polar code
is also provided. It can be seen that with the same inner SCL
decoding list size, the proposed SCL2 decoding yields a similar
performance as the OSD-SCL decoding. As the SNR increases,
the SCL2 decoding can even slightly outperform the OSD-SCL
decoding.

Fig. 5 shows the BLER performance of the SCL2 decoding
of the 3-level (512, 250) U-UV code. It is constructed by the
(64, 57), (64, 51), (64, 45), (64, 24), (64, 45), (64, 18), (64, 10)
and (64, 0) eBCH codes. Note that the (64, 0) outer code
carries frozen bits. The CA-SCL decoding performance of the
(512, 250) CRC-polar code is also provided. Similarly, the
SCL2 decoding yield a similar performance as the OSD-SCL
decoding.

B. Decoding Complexity

Table II compares the decoding complexity of three coding
schemes, including the SCL2 decoding of the (512, 250) U-UV
code, the OSD-SCL decoding of the same U-UV code and the
CA-SCL decoding of the (512, 250) CRC-polar code. It can be
seen that the SCL2 decoding reduces the amount of BOPs by
an order of magnitude over the OSD-SCL decoding, while it
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Fig. 4. SCL2 decoding performance of the (256, 183) U-UV code.
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Fig. 5. SCL2 decoding performance of the (512, 250) U-UV code.

incurs a slightly larger amount of FLOPs. This vindicates our
theoretical analysis of section III-C. It can also be seen that the
U-UV code’s performance advantage over the CRC-polar code
is realized at the cost of higher decoding complexity.

TABLE II
DECODING COMPLEXITY COMPARISON OF THREE CODING SCHEMES

Scheme FLOPs BOPs

U-UV, SCL2(2) 4.06× 105 1.10× 105

U-UV, SCL2(4) 8.08× 105 2.27× 105

U-UV, OSD-SCL(2) 2.41× 105 1.09× 106

U-UV, OSD-SCL(4) 5.20× 105 2.14× 106

CRC-polar, CA-SCL(2) 1.03× 104 3.46× 103

CRC-polar, CA-SCL(4) 2.12× 104 6.56× 103
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